XymonPSClient

The Xymon PS (PowerShell) client runs as a Windows service. It is a PowerShell script that runs data collection routines approximately every 5 minutes by default. By default, every 72nd run (approximately every 6 hours) a “slow scan” is run which includes some routines that may take a little longer to run, for example, an update check.
Configuration

The Xymon PS Client takes its configuration from two locations:

· Local settings – either registry or XML

· ‘Remote’ settings – returned from the Xymon server, configured in client-local.cfg

Local settings

Local settings are non-frequently changing items such as the address of FQDN of the Xymon server.

In the original Xymon PS client, the local settings were stored in the registry and could only be modified via RegEdit or the client script itself.

In XymonPSClient, the registry settings can still be used but if a xymonclient_config.xml is present in the same directory as xymonclient.ps1, the XML file will be used in preference to the registry. Using an XML file makes the settings more transparent and easier to amend if necessary.

If you wish to use registry settings, you should not supply an XML file. If you supply an XML file, any registry configuration will be ignored. Registry settings are only supported for backwards compatibility.
The XML file is a standard XML file comprising XML elements. An example is shown below:

<XymonSettings>

 <servers>xymonserver.domain.com</servers>

 <clientlogfile>c:\xymonclient.log</clientlogfile>

 <clientconfigfile>c:\program files\xymon\clientconfig.cfg</clientconfigfile>

 <clientfqdn>0</clientfqdn>

 <clientlower>1</clientlower>

 <clientremotecfgexec>1</clientremotecfgexec>

</XymonSettings>

If a setting is not supplied in the config file or registry, then the default value is used. The minimum configuration would be to supply just the <servers> element in <XymonSettings> elements and use defaults for all other settings.

	Element
	Default value
	Description

	clientname
	(none)
	Override the client name reported to the server. By default, the client name is obtained from the netoworking properties of the OS, or the COMPUTERNAME environment variable. If this setting has a value, it will override any value obtained from the OS.

	servers
	(none)
	IP address(es) or FQDN(s) of Xymon servers to send data to, separated by space ‘ ‘ if multiple.
See “TCP or HTTP?” below

	serverUrl
	(none)
	Url of Xymon server to send data to – requires server to be running xymoncgimsg.cgi

See “TCP or HTTP?” below

	serverHttpUsername
	(none)
	If using HTTP, username to use for authenticating to the Xymon web server (optional).

See “TCP or HTTP?” below

	serverHttpPassword
	(none)
	If using HTTP, password to use for authenticating to the Xymon web server (optional).

If populated, this value will be encrypted automatically on the first run.

See “TCP or HTTP?” below

	serverHttpTimeoutMs
	100000
	If using HTTP, timeout in milliseconds for the HTTP request/response.

	clientlogfile
	%TEMP%\xymonclient.log
	File to which xymon client messages are logged to. This file is overwritten on every data collection.

	clientconfigfile
	%TEMP%\xymonconfig.cfg
	File to which the remote config from the Xymon server is cached. If you’re not using the remote config, you can put config directives in this file.

	clientlogpath
	The path used for clientlogfile
	Path where the client will write a log file containing the data sent to the server. This file (xymon-lastcollect.txt) is overwritten on every collection.

	clientlogretain
	0
	If greater than 0, the client will retain this many log files (xymonclient.log and xymon-lastcollect.txt), and will rotate them automatically.

	clientsoftware
	powershell
	Used to override the software name reported to Xymon. Can be set to bbwin to report that the client software is bbwin.

	clientclass
	powershell
	Used to override the class reported to Xymon.

	clientfqdn
	1
	0 = the client does not attempt to resolve the client name to an FQDN

1 = the client attempts to resolve the client name to an FQDN

e.g. if the client host name is client1, 0 would return just client1 as the client name. 1 would return client1.domain.com.

	clientlower
	1
	0 = the case of the client name is not changed

1 = the client name is forced to lower case

	clientremotecfgexec
	0
	0 = do not parse and use the config returned by the server

1 = parse and use the config returned by the server. This will cause the file specified by clientconfigfile to be overwritten

	loopinterval
	300
	The client will report data to the server every <loopinterval> seconds.

	slowscanrate
	72
	Every so many collections, the client will perform some extra tests and potentially check for updates. This parameter controls how often it happens – by default, 72 * 300 seconds (loopinterval) = 6 hours

	maxlogage
	60
	Minutes age for event log reporting

	Maxevents
	5000
	The maximum number of event log messages that can be returned in one data collection, per log

	reportevt
	1
	Whether to scan and report event log

0 = no

1 = yes

	wanteddisks
	3
	Numeric values, space separated. Default is 3 (fixed disks only).

2 = Removable (e.g. USB)
3 = Fixed (local disks)
4 = Remote (network shares)
5 = CD
6 = RAM disk

99 = unmounted volumes

	EnableWin32_Product
	0
	0 = do not use Win32_Product

1 = use Win32_Product

This item has been removed as use of Win32_Product is not recommended by Microsoft (see http://support.microsoft.com/kb/974524)

	EnableWin32_QuickFixEngineering
	0
	0 = do not use Win32_QuickFixEngineering

1 = use Win32_QuickFixEngineering

This is disabled by default to minimise the number of WMI calls used. If enabled, Win32_QuickFixEngineering is called on slow scans.

	EnableWMISections
	0
	0 = disable additional WMI data

1 = enable additional WMI data

This is disabled by default to minimise the number of WMI calls used. If enabled, extra WMI calls and data is returned for OS, BIOS, Processor, Memory, Disk.

	EnableIISSection
	1
	0 = disable collecting IIS site data

1 = enable collecting IIS site data

Used to return some information about sites IIS is serving

	ClientProcessPriority
	Normal
	Possible values Normal, Idle, High, RealTime, BelowNormal, AboveNormal.

Can be used to raise or lower the process priority of the powershell process running the client.

	servergiflocation
	/xymon/gifs
	The location of server gifs such as red.gif, yellow.gif, green.gif. Used for sending custom data to the server. Note that this can also be specified by the server in the client-local.cfg and that any setting sent by the server will override the local setting.

	externalscriptlocation
	<installation dir>\ext
	The location for external scripts

	externaldatalocation
	<installation dir>\tmp
	The location for external data. External processes can place BBWin format data files in this location and the XymonPS client will pick them up and send them to the server as ‘status’ messages.

	localdatalocation
	<installation dir>\local
	The location for ‘local’ data.

External processes can place data files in this location and the XymonPS client will pick them up and include them in the core ‘client’ message.

	clientbbwinmembug
	1 (compatible with BBWin)
	Set to 1 to maintain compatibility with BBWin. Setting to 0 swaps the values for ‘page’ and ‘virtual’ – this is the correct order but not how BBWin did it.

	XymonAcceptUTF8
	0
	0 = send client messages to Xymon using “original” ASCII encoding (the default) – does not strip diacritic or multibyte characters
1 = send client messages to Xymon using UTF8 encoding
Use with caution, enabling UTF8 may cause unexpected behaviour.

2 = send client messages using “pure” ASCII encoding – will filter/convert diacritics but may take extra CPU/processing time

	EnableDiskPart
	0
	0 = do not run diskpart commands

1 = run diskpart commands to determine and report whether this server has clustered volumes – note, can cause memory leaks in Microsoft Virtual Disk service

Remote settings

These are configured in client-local.cfg on the server as you would with any other client. There are some additional directives recognised by the PS client. More information below.

TCP or HTTP?

XymonPSClient supports sending data to the Xymon server in two ways – via TCP or via HTTP(S).

TCP is the usual way of connecting hosts to the Xymon server, using a normal TCP socket usually to port 1984. To use TCP, configure the <servers> element in xymonclient_config.xml and leave out <serverUrl> or make it blank (<serverUrl/>).

HTTP is an alternate method. It can be used if you have xymoncgimsg.cgi running on the web server on your Xymon server – see https://www.xymon.com/help/manpages/man8/xymoncgimsg.cgi.8.html. The web server running the CGI can be configured for SSL (i.e. HTTPS) and / or authentication – XymonPSClient supports basic authentication and SSL. If you require authentication, the <serverHttpUsername> and <serverHttpPassword> elements should be configured.
If you are using HTTP and transmitting over unsecure networks (e.g. the internet), it is strongly recommended to enable SSL, authentication and disallow HTTP connections.

serverHttpPassword encryption

If <serverHttpPassword> is set, the Xymon client will encrypt the password if it is not encrypted and remove the plain text password from the configuration file, overwriting with the encrypted password. The Xymon client will prefix the encrypted password with ‘{SecureString}’, so it is easy to tell if the client has attempted to encrypt the password or not.

This is done using the .NET SecureString functions, which means that the encryption is unique to the server and user. This means that once the password has been encrypted, you cannot use the same xymonclient_config.xml on another server. It also means that if you have been testing by running XymonPSClient from a command prompt, and this encrypts the password, when you run XymonPSClient as a service it will not be able to decrypt the password unless the service is running as the same user.
In both scenarios, replacing the encrypted password with the plain text password and re-starting Xymon will cause the password to be re-encypted.
Installation

Files

The following files are required:

· Nssm.exe

· XymonClient.ps1

· Xymonclient_config.xml

Any other files are legacy from older versions and can be deleted. In particular, XymonPSClient.exe is not required.
Before installing
The script is designed to be installed as a Windows service. In the original script, a renamed srvany.exe was used (XymonPSClient.exe).

In more recent versions, the decision has been made to switch to use NSSM (http://nssm.cc). This is a public domain service manager very similar to srvany. It offers the feature of restarting the script if it is stopped for any reason – for example, if a user kills the PowerShell process. It also allows the use of 64-bit processes on 64-bit operating systems.

Note that the version of NSSM supplied in this repository is for x64 systems. If you are running an x86 (32-bit) system, please download the 32-bit bit nssm.exe from http://nssm.cc.

You may need to “unblock” execution of the downloaded scripts and files depending on your Windows settings. To do this, right-click each file and select Properties. If you see the option to unblock, please click the Unblock button.

[image: image1.png]Secuty: Thisfile came from ancther
o v g o ket

help protecttis computer

Installation steps

Installation of the client is straightforward:

1. Review xymonclient_config.xml and at the least, set the Xymon server address.

2. Copy the following files to a directory on the target server (e.g. c:\program files\xymon)

a. Xymonclient.ps1

b. Nssm.exe

c. Xymonclient_config.xml

3. Run the following command to install the service from a PowerShell prompt (may need to be an administrative prompt):

a. .\xymonclient.ps1 install

4. Either review and start the service in Windows services control panel or run:

a. .\xymonclient.ps1 start

The script will create the windows service entry using the SYSTEM or LOCALSYSTEM account to run the service.
If BBWin or the original PowerShell client is running, it’s best to stop and disable those services first.

Powershell execution policy

In step 3 above, if the PowerShell execution policy has not been set then you will receive a PowerShell error. You can either run “Set-ExecutionPolicy RemoteSigned” from an administrative PowerShell prompt or start powershell using “powershell.exe -executionpolicy remotesigned” from Start->Run.

Uninstallation

1. Stop the XymonPSClient service - run the following commands to uninstall the service from a PowerShell prompt (may need to be an administrative prompt):

a. cd "c:\program files\xymon" (substitute the installation location)

b. .\xymonclient.ps1 stop

c. .\xymonclient.ps1 uninstall

2. You can then delete all files from the installation directory. There may also be two log files (by default in the c:\ directory), xymonclient.log and xymon-lastcollect.txt which can also be deleted.

External scripts
As of version 2.1, XymonPSClient supports external scripts. Along with external data, this has been designed to try and support existing external scripts that may be being used with BBWin with a minimum of modification.

XymonPSClient will look for and install scripts in the ‘externalscriptlocation’ XML configuration parameter, which defaults to the ‘ext’ subdirectory of the installation directory.

The main differences between BBWin and XymonPSClient concern how scripts are defined, scheduling and automatic deployment and update.

Defining scripts is done via the new ‘external’ directive for client-local.cfg. This allows you to define, deploy and update from the server rather than having to deploy to each client manually.
Unlike BBWin, XymonPSClient does not allow you to schedule a script to be run periodically, rather it offers two scheduling options:

· Run every scan (every 300 seconds by default – set by XML configuration item ‘loopinterval’)

· Run every ‘slow’ scan (every 6 hours by default – set by XML configuration items ‘loopinterval’ and ‘slowscanrate’)

Additionally, XymonPSClient offers two execution methods:

· Synchronous – XymonPSClient launches the script process and then waits for completion – recommended for scripts with a short execution time (e.g. less than ‘loopinterval’) and which require frequent updates

· Asynchronous – XymonPSClient launches the script process and does not wait for completion – the script runs in the background – recommended for scripts with a long execution time or infrequent updates

When using asynchronous scripts, you can use file locking to prevent XymonPSClient from picking up results before they’re ready. XymonPSClient will not pick up any file that is locked for writing.

Care should be taken with potentially long running scripts. Do not run long running scripts synchronously as that will cause the XymonPSClient to pause until the script finishes and may well cause purple alerts. Likewise, do not run long-running scripts asynchronously on every scan, as that will cause multiple copies of the script to run.

For more details, see the ‘external’ directive below.

If you need finer control of when your script is run, there are two options:

· Use Windows Task Scheduler to execute the script, but have your script write external data results to the externaldatalocation or localdatalocation. XymonPSClient will pick it up.
· Write your script so that it writes a small data file containing the date/time it last sent results (you could use the file modified timestamp for this). Then only send new results if your desired interval has expired.
In either case, you may want to use the “lifetime” option to prevent your tests going purple (see External Data below).
Some scripts (e.g. those supplied with BBWin) use registry keys to determine the location of the script and data directories. The easiest way to adjust for XymonPSClient is to create or update the keys, pointing the values to the new locations. Note that on 64 bit platforms, the keys may have been created by BBWin under the Wow6432Node (e.g. HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\BBWin), you will need to recreate the keys in the standard location HKEY_LOCAL_MACHINE\SOFTWARE\BBWin.

Returning data to Xymon

There are a number of options for returning data from external scripts to Xymon:

· Write a file to externaldatalocation – results in a ‘status’ message back to Xymon

· Write a file to localdatalocation – results in the file content being contained in the core ‘client’ message back to Xymon

· Send a message back to Xymon directly (e.g. using ‘xymon.ps1’ available from the XymonPSClient svn repository as a basis)

External data

For external data, XymonPSClient supports the same file format as BBWin. XymonPSClient will always look for external data in the location specified by the XML configuration ‘externaldatalocation’ – by default, the ‘tmp’ subdirectory in the installation directory. This data collection occurs if the directory exists, regardless of whether any external scripts are defined. This allows you to use completely external scripts / processes e.g. via Windows Task Scheduler and still have the results reported back to Xymon.
The BBWin format is a text file, named for the test – i.e. the name of the file controls the name of the test that will be shown on the dashboard.
Any files with ‘.’ in the filename are ignored – this is in line with BBWin functionality. Therefore, filenames with extensions (e.g. testname.txt) will be ignored.

The filename can be used to send test data as if it has come from a different host. In this case, the filename should be TESTNAME^HOSTNAME. This is useful if you are running external scripts on a server but want the results to appear in Xymon separately (for example, for monitoring a SAN).

The contents of the file should be as follows:

<GROUPCOLOUR>[+LIFETIME] <MESSAGE>

GROUPCOLOUR – red, yellow, green or clear – the colour for the group (blue and purple are not allowed as they are used internally by Xymon server)
+LIFETIME – optional – how long before Xymon should turn the status purple if no further results are received, specified in minutes (but supports 'h', 'd' or 'w' suffix e.g. 5h for 5 hours)

MESSAGE - the message to be displayed. This message can span multiple lines and can include “&colour” e.g. &green / &yellow / &red to display a subtest with the corresponding coloured GIF.

For example, the external script fsmon supplied with the BBWin source writes external files with the following contents:

green 14/01/2016 14:37:07 [SERVER1]

&green checking directory extdirtest 'c:\temp' - Rules are <50 and <100 - Actually 5 file(s)

Here the group colour is green and the subtest colour is also green, no lifetime has been specified so the result will turn purple after the default interval if no more test results are sent.

Local data

Data written to the localdatalocation will be read and included in the core ‘client’ message back to Xymon. It will be included in a section named [local:<filename>], where <filename> is the name of the file the data was found in. The data will not be parsed, it will simply be copied into the message.

The data file will not be read if it is locked for writing by any other process. This is to prevent data being sent which is only partially written.

Any data files read successfully will be removed (deleted) once included in the message.

This local data feature is designed to replicate the behaviour of the Linux client. The data can be retrieved later using a ‘clientlog’ xymon command:

xymon 0 "clientlog <client host> section=local:<filename>"

Example: a script writes a file named ‘sqlversion’ to the localdatalocation, containing the following text:

Microsoft SQL Server 2014 (SP2-GDR) (KB3194714) - 12.0.5203.0 (X64)
XymonPSClient will include the following in the ‘client’ message:

[local:sqlversion]

Microsoft SQL Server 2014 (SP2-GDR) (KB3194714) - 12.0.5203.0 (X64)
The file ‘sqlversion’ will be deleted.

Using xymon.ps1
The powershell version of the 'xymon' communications program will accept similar commands to the native UNIX version. This command can be used to send various messages to the Xymon server. see the following syntax:-

C:\WinPSClient>powershell -file xymon.ps1 -help

Usage : xymon.ps1 [-recipient RECIPIENT] -message 'DATA'|-msgfile FILE

 xymon.ps1 [-recipient RECIPIENT] -message 'download FILE' [-output RECEIVED]

 RECIPIENT: IP-address or hostname (overrides configured value)

 DATA: Message to send, or '@' to read from stdin

One of either -message or -msgfile must be provided and if using the latter, then FILE will be deleted after successful transmission of DATA!

For the special case of the message 'download FILE' then the received data will be saved locally in 'FILE' but this can be overridden using the -output option.
XymonPSClient – Recognised Remote client-local.cfg configuration items
The configuration items in this section are additional to the “standard” configuration items accepted by the Xymon client on other operating systems. These standard items are documented in the client-local.cfg man page or via the xymon.com website (https://www.xymon.com/help/manpages/man5/client-local.cfg.5.html).
eventlogswanted & eventlog
These two directives allow the monitoring of event log data.
By default, data from the last 60 minutes is returned. This can be overridden by using the <maxlogage> element in xymonclient_config.xml.

Both directives are optional – if eventlogswanted is not specified, by default data from the Application, System and Security logs will be returned up to a maximum length of 1024 bytes total. eventlog entries allow filtering out or including certain events.

Only one eventlogswanted statement can be processed. If you are using config merging and you have multiple eventlogswanted statements, you can set a priority on the statements – the statement with the highest priority will be the one processed.
eventlogswanted:PRIORITY:LIST_OF_EVENT_LOGS:MAX_SIZE:REQUIRED_LEVELS
PRIORITY – optional – used to specify which eventlogswanted statement is used, in case config merging means multiple eventlogswanted statements appear. The statement with the highest priority will be used. If omitted, priority for the statement will be zero.

LIST_OF_EVENT_LOGS – a comma delimited list of event logs to retrieve data from; can use wildcards (* = match any character)
MAX_SIZE – the maximum amount of data to be returned

REQUIRED_LEVELS – optional – the levels that should be returned, comma separated. Allowed values: Information, Warning, Critical, Error, Verbose. By default, all are returned.
Examples

eventlogswanted:100:Application,System:1000:Warning,Critical

eventlogswanted:System:1000:Warning,Critical,Error

If config merging resulted in the above two eventlogswanted statements, the first would be used as it has a priority of 100.

eventlog:EVENT_LOG
EVENT_LOG – the event log this section refers to

The eventlog directive works in one of two ways:

· Exclude mode: including all events except specified – use ignore

· Include mode: ignore all events except specified – use include

The directive should be followed by either one or more ignore directives or one or more include directives.
Include mode takes priority - if there are any “include” entries, include mode will be used. All ignore entries will be disregarded.
Ignore / Include configure which event log entries should be ignored or included. If the event log provider or message match an ignore or include pattern, the event log entry will filtered appropriately.

ignore PATTERN

PATTERN – a regular expression to ignore
include PATTERN

PATTERN – a regular expression to include

log

log:FILENAME:SIZE:POSITIONS
Same as standard client-local.cfg, except ignore and trigger statements are not supported. Used to return entries from log files from various applications.
FILENAME – filename of the log. Wildcards are supported in the FILENAME field. Backticks are not supported.

SIZE – the maximum amount of data to be returned.

POSITIONS (optional) – the client returns the logfile and then saves the position. This is used to detect growth. By default, 6 positions are saved and the oldest saved position is removed every time the client collects data (by default, every 5 minutes). Therefore, unless new data is appended, nothing will be returned after 30 minutes. This parameter allows you to adjust the number of saved positions to extend this period (e.g. 288 = 24 hours).

dir

dir:DIRECTORYNAME

Same as standard client-local.cfg – used to watch the size of a directory.
DIRECTORYNAME – directory to monitor. Backticks are not supported.

file

file:FILENAME
Same as standard client-local.cfg. Used to watch the meta-data of a file: owner, group, size, permissions.
Note that unlike the standard client, file hashing is not supported.

FILENAME – filename to report on

dirsize

dirsize:DIRECTORYNAME:OPERATOR:SIZE:COLOUR

Used to monitor the size of a directory or file
DIRECTORYNAME – directory or filename to monitor

OPERATOR – gt / lt / eq – an operator to apply to the SIZE parameter

SIZE – the size (in bytes) to use with operator. The actual directory/file size is compared to this SIZE and controls the colour returned if the condition is met.

COLOUR – the colour (red/yellow/green) to be returned if the condition is met

For example, if you want a red status when c:\temp rises above 100000 bytes:

dirsize:c:\temp:gt:100000:red
dirsize can also be used to check that a file exists or check that a file or directory does not exist. When an item does not exist, the size is set to -1. Therefore:

dirsize:c:\temp\should-not-exist.txt:gt:0:red

will give a red alert if the file ‘c:\temp\should-not-exist.txt ‘ does exist, and:

dirsize:c\temp\should-exist.txt:lt:0:red

will give a red alert if the file ‘c\temp\should-exist.txt’ does not exist.
dirtime

dirtime:DIRECTORYNAME:UNUSED:OPERATOR:MINUTES:COLOUR

Used to monitor whether the last modification time of a directory or file has changed. The last modification time of the item is subtracted from the current date/time and a specified status is sent if the number of minutes is greater than, less than or equal to the minutes specified.
DIRECTORYNAME – directory or filename to monitor

UNUSED – not used (retained for compatibility) – can be left blank

OPERATOR – gt / lt / eq – an operator to apply to the MINUTES parameter

MINUTES – the number of minutes to use with operator. Used to compare with the actual value and control the colour returned.

COLOUR – the colour (red/yellow/green) to be returned if the condition is met
For example, if you expect the directory c:\temp to receive regular updates, you may want to send a red status if no files have been written for 30 minutes:
dirtime:c:\temp::gt:30:red

This would send a red status if the last modification date of c:\temp was more than 30 minutes ago.

servicecheck

servicecheck:SERVICENAME:DURATION

Check a specified Windows Service is running and attempt to start it if not.
SERVICENAME – name of the service to check. Should be the name from the Name field when you execute get-service from a Powershell prompt – not the name from the Services control panel

DURATION – how long in seconds a service should not be running before the client will attempt to restart it

For each servicecheck directive, the client will track the last time it saw the service running. If the service stops, it will be restarted after DURATION seconds – bearing in mind that by default, the client only performs data collections every 5 minutes, so the restart would be the next 5 minute boundary after DURATION seconds.
noservicecheck

noservicecheck:SERVICENAME:DAYOFWEEK:STARTHOUR:DURATION
Checks if a specified Windows Service servicecheck exists and suppresses it during the specified maintenance window. Window can span multiple days, as specified by Duration, but would terminate if script is restarted after initiation day/hour.

SERVICENAME – name of the service to check for a ‘servicecheck’ statement.

DAYOFWEEK – numeric day of the week, where Sunday = 0, Monday = 1, etc.

STARTHOUR – hour to start the maintenance window, 0 for midnight up to 23 (24 hour clock)
DURATION – how long in hours the maintenance window should last
Examples:

servicecheck:Sophos Message Router:10

noservicecheck:Sophos Message Router:0:5:1

(no restart starting first scan after Sunday 5AM to first scan after 6AM)

clientversion

clientversion:VERSION:UPDATE_LOCATION:HASH:HASHVALUE
Used to specify the version of the script the client should be running. If the client is running a lower version, it will attempt to retrieve the correct version from the location given and restart. If the client version is equal to or greater than the specified version, no action is taken.
Update checks run on “slow scan” executions – by default, approximately every 6 hours.

VERSION – the version number the client should be running.

UPDATE_LOCATION – the location where the client can copy the newer version of the script from. This can be an UNC path (\\SERVER\share\), or a http, https or bb url. Should not contain a filename. If you have not disabled the download command on the Xymon server, you can use bb:// urls (bb://path/on/server) which will copy the script directly from the Xymon server’s download directory.
HASH – optional – possible values MD5, SHA1 or SHA256 - specify a hashing algorithm to check the update file matches the expected HASHVALUE

HASHVALUE – optional (required if HASH specified) – specify a hash value to compare to the calculated hash value of the download update

The client expects to be able to download or copy a file “xymonclient_<version>.ps1” from the update location (e.g. xymonclient_1.95.ps1). If the file cannot be downloaded or copied, the current version of the script will continue running.

If you are using the http(s) option and your web server returns an unusual 404 page or random garbage, and you do not use the hashing option, the client may be updated to whatever your web server returns.

If the hash options are used, any update (whether from UNC path or http(s)) will have a hash value calculated and this will be compared to the HASHVALUE specified. If the values match, the update will be applied, otherwise, the update will be rejected. It is therefore recommended that you use these options from version 2.05 onwards! You should calculate the hash value using md5sum, sha1sum, sha256sum or similar to match the HASH algorithm you specify.
Examples:

clientversion:2.01:\\server1\XymonPS\

Minimum client version should be 2.01 and updates can be downloaded from the share \\server1\XymonPS
clientversion:2.1:http://server1/XymonPS:MD5:6e8a1dd4e0bdc1ff97955f8ea6cc7baa
Minimum client version should be 2.1 and updates can be downloaded from http://server1/XymonPS. The update should be hashed using MD5 and if the calculated value does not match 6e8a1dd4e0bdc1ff97955f8ea6cc7baa, then the update will be rejected (this is an example hash value only).

clientversion:2.21:bb://XymonPS:SHA1:829bc631cd428c55c4673c00242db81fe7c4fb37

Minimum client version should be 2.21 and updates can be downloaded from the XymonPS sub directory of the download directory on the Xymon server. The update should be hashed using SHA1 and if the calculated value does not match 829bc631cd428c55c4673c00242db81fe7c4fb37, then the update will be rejected (this is an example hash value only).

servergifs

servergifs:GIFS_LOCATION

Specify a location for server gifs – used when sending custom status messages.

This is useful when the default location has been overridden on the Xymon server. It’s used to point to the red.gif / yellow.gif / green.gif images when custom status screens are being sent to the server.

GIFS_LOCATION – the location on the server for server gifs, must be http[s] accessible. Should end in a slash (/).

Example:

servergifs:/site/London/

terminalservicessessions

can be shortened to tssessions
terminalservicessessions:YELLOW_STATUS:RED_STATUS

or

tssessions:YELLOW_STATUS:RED_STATUS

Monitors the number of remote desktop / terminal services sessions available on a server

YELLOW_STATUS – when the number of free sessions is less than or equal to this value, a yellow status is returned

RED_STATUS – when the number of free sessions is less than or equal to this value, a red status is returned

adreplicationcheck

adreplicationcheck

Check the status of Active Directory replication – only makes sense to use this directive on domain controllers. Uses the repadmin tool (which should be present on domain controllers). Sends a red status if any replications show as failed (i.e. ‘Last Failure Time’ is more recent than ‘Last Success Time’).
ifstat

ifstat:<LIST_OF_IP_CLASSES>

By default, the client will report on IPv4 addresses in the [ifstat] section. This directive can be used to report on just IPv6 or both IPv4 and IPv6.

LIST_OF_IP_CLASSES – ip classes to report on, comma separated. Supported classes: ‘IPv4’ or ‘IPv6’ (not case sensitive)

Examples:

Just report on IPv6 addresses:

ifstat:ipv6

Report on IPv4 and IPv6 addresses:

ifstat:ipv4,ipv6

ports

ports:OPTION

Used to limit the ports reported to just listening ports. By default, the client will report all ports (netstat -an); setting the option can be used to limit to just listening ports (equivalent to netstat -an | findstr LISTENING).

OPTION – supported value ‘listenonly’. Any other values / text will be ignored.

If ports is not specified in client-local.cfg, or any option other than ‘listenonly’ is specified, then all ports will be reported. If ‘ports:listenonly’ is specified, only listening ports will be reported.

Examples:

Report only listening ports:

ports:listenonly

Report all ports:

ports:all

(or omit ports statement)
processruntime

can be shortened to procruntime

processruntime:PROCESS_NAME:YELLOW_STATUS:RED_STATUS

or

procruntime:PROCESS_NAME:YELLOW_STATUS:RED_STATUS

Will raise an alert if the named process has been running for a specified number of minutes. For example, if you have a process that should normally take 10 minutes but 30 minutes is abnormal, you can use this test to check and alert when the process takes more than 10 minutes to run.

The Xymon PS client uses data from Windows to find out the start time of each process. From this, it can calculate how long a process has been “alive” for, the elapsed time. This data is then used for this alert and is shown on the procs page.

PROCESS_NAME – then process to alert on. This should match the name of the process as seen on the cpu page. Service names can also be used, prefixed with SVC: as seen on the cpu page.

YELLOW_STATUS – number of minutes after which a yellow alert will be raised.

RED_STATUS – number of minutes after which a red alert will be raised.

Examples:
Raise a yellow alert if an importer process is found that has been running for 20 minutes. Red if it has been running for 60 minutes:

processruntime:importer:20:60

Raise a yellow alert if the importer service has been running for 30 minutes. Red if it has been running for 60 minutes:

procruntime:SVC:importer:30:60
repeattest
repeattest:<TEST>:<DESTINATION TEST>

trigger:<ALERTCOLOUR>:<REGEX>

repeattest allows you to repeat the results of an existing test as a standalone status message to the server under a different test name. Both will then be shown on the dashboard and this allows you to split alerts to different destination. For example, you may have an application team you want alerts for certain services to go to, and a different infrastructure team for other service alerts.

You can optionally specify one or more ‘trigger’ statements that will control what colour is sent to the server. This allows you to control alerts based on the content of the test.

repeattest parameters:

TEST – the test to repeat (e.g. disk, cpu, svcs) – this must be the name of a section in the data sent to Xymon

DESTINATION TEST – the test name the repeated data will be sent as.

trigger parameters:

ALERTCOLOUR – the colour of alert to raise (red, yellow, green)

REGEX – the regular expression used to detect a condition for which an ALERTCOLOUR alert should be raised

Examples:

Repeat the services test as svcs_ops. Raise an alert if SQL server is stopped:

repeattest:svcs:svcs_ops

trigger:red:^MSSQLSERVER.+\sstopped\s
Repeat the disk test as disk_ops, yellow alert if drive d: >= 70% used, red alert if drive d: >= 95% used:

repeattest:disk:disk_ops

trigger:yellow:\s(7[56789]|8\d|9[01234])\%

trigger:red:\s(9[56789]|100)\%

external

external:PRIORITY:SCHEDULE:METHOD:SCRIPT|HASH|HASHVALUE|PROCESS|ARGUMENTS
Please note that the delimiters for this directive are slightly different - the pipe delimiter is used for some parameters to ease parsing.

external allows you to specify external scripts to run periodically to provide additional data. Scripts compatible with BBWin should work with a minimum of changes. External scripts return data back to Xymon by writing results to an external data file – see the section above in the main document.

PRIORITY – optional – value 0-99. If specifying multiple externals, they will be executed in priority order, lower values first. If values match, async externals will be executed before sync. If priority is not specified, the lowest priority will be allocated (99).

SCHEDULE – possible values everyscan or slowscan - when to run the external script

METHOD – possible values sync or async – run the script synchronously (XymonPSClient waits for the script to finish before proceeding) or asynchronously (the script runs in the background)

SCRIPT – the name of the script without path (if it exists in the externalscriptlocation and you do not wish to use update functions) or the location (UNC path or http/https/bb url) from which it can be copied / downloaded

HASH – optional - possible values MD5, SHA1 or SHA256 - specify a hashing algorithm to check the script matches the expected HASHVALUE

HASHVALUE – (only if HASH is specified) - specify a hash value to compare to the calculated hash value of the script

PROCESS – optional – specify the name of a process to be used to execute the script – e.g. powershell.exe for Powershell scripts

ARGUMENTS – optional (required if PROCESS specified) – specify any arguments to be passed to PROCESS. The text {script} can be used – it will be replaced with the full path and filename of the script. The text {scriptdir} can be used – it will be replaced with the path to the script.
If the externalscriptlocation directory does not exist and the external directive is used, XymonPSClient will attempt to create it.
If a hash algorithm and value is specified, XymonPSClient will calculate the hash of the script currently on the server and will not execute the script if the values do not match. If the script does not exist or the hash check fails, XymonPSClient will attempt to copy or download the script from the location specified by SCRIPT.
The optional PROCESS and ARGUMENTS parameters allow a process to be called to call the script, e.g. and interpreter. If PROCESS is used, HASH, HASHVALUE and ARGUMENTS must be specified. The text {script} in the ARGUMENTS parameter will be replaced with the full path and filename of the script. For example, if the external script is a Powershell script, powershell.exe would be used for the PROCESS and –file “{script}” for the ARGUMENTS.
Care should be taken with potentially long running scripts. Do not run long running scripts synchronously as that will cause the XymonPSClient to pause until the script finishes and may well cause purple alerts. Likewise, do not run long-running scripts asynchronously on every scan, as that will cause multiple copies of the script to run.

Examples:

external:everyscan:sync:fsmon.vbs

This will run fsmon.vbs (supplied with BBWin source) every scan (300 seconds by default), synchronously. The script will not be checked against a hash and therefore will not be automatically updated if it changes. XymonPSClient will attempt to execute fsmon.vbs directly. If the script does not exist, it will not be executed.
external:everyscan:sync:http://server1/XymonPS/script.ps1|MD5|536476abc234c3c1|powershell.exe|-executionpolicy remotesigned –file “{script}”
This will run script.ps1 every scan, synchronously. If the script does not exist or if the existing script does not match the MD5 hash 536476abc234c3c1, it will be downloaded from http://server1/XymonPS/script.ps1. If the downloaded script does not match the hash value, it will not be executed. When it is executed, a powershell.exe process will be created with the arguments specified.

external:slowscan:async:http://server1/XymonPS/script.ps1|MD5|536476abc234c3c1|powershell.exe|-executionpolicy remotesigned –file “{script}”

As above, but this will run every slow scan, asynchronously.

external:2:everyscan:sync:bb://jmxstat.tcl|SHA1|85f0062a1fddb3add40872ce18141db9426a44fb|U:\Apps\java\jre1.8.0_144\bin\java.exe|-jar "U:\Apps\WinPSClient\ext\jmxsh-R5.jar" "U:\Apps\WinPSClient\ext\jmxstat.tcl" -J "mytomcat"

This will run jmxstat.tcl every scan, synchronously. If the script does not exist or if the existing script does not match the SHA1 hash 85f0062a1fddb3add40872ce18141db9426a44fb, it will be downloaded from the download directory of the Xymon server. If the downloaded script does not match the hash value, it will not be executed. When it is executed, a java.exe process will be created with the arguments specified.

xymonlogsend

xymonlogsend:COLOUR1:COLOUR2
COLOUR1 – optional – colour to send on a slow scan

COLOUR2 – optional – colour to send on a restart, for example after a client update

Using the directive xymonlogsend in the client-local.cfg will cause the client to send the client log file to the Xymon server after every collection, as a test with green status named ‘xymonlog’. This enables you to see the log from any client from the front end dashboard.

You can optionally specify two colours, the first for a different colour on slow scan and the second for a different colour when the client is restarted (e.g. after an update). This allows you to see the history of slow scans or client updates via the front end status history options.

Examples:

xymonlogsend

just sends logs with green status always

xymonlogsend:clear:yellow

sends logs with green status by default, with clear status when a slow scan occurs and with yellow status when the client is restarted.

slimmode

slimmode

immediately followed by zero or more of:

services:<CSV list of services>

processes:<CSV list of processes>

sections:<CSV list of sections>

Using the directive slimmode causes the client to reduce the amount of data it sends back to the server, and allows you some control over what is omitted.
services:<CSV list of services>
If slimmode is set and a list of services is provided, only those services will be reported back to the server. The names of the services should be as they are shown in the ‘Name’ column on the svcs page on Xymon.

If slimmode is set and the services directive is not, all processes will be reported as normal.

processes:<CSV list of processes>

If slimmode is set and a list of processes is provided, only those processes will be reported back to the server. The names of the processes should be as they are shown on the ‘cpu’ page on Xymon.

If slimmode is set and the processes directive is not, all processes will be reported as normal.

sections:<CSV list of sections>

The sections to include can be:

netstat

ports

ipconfig

route

ifstat

who

users

If slimmode is set, all the above sections will be excluded unless they are mentioned in a sections directive.

Example:

slimmode

services:XymonPSClient,VMTools

processes:powershell,LogonUI

sections:Who

· Only the XymonPSClient and VMTools services will be included

· Only powershell and LogonUI processes will be included

· The ‘who’ section will be populated but netstat, ports, ipconfig, route, ifstat, users will be omitted

Maxloop

maxloop:COLLECTIONS

COLLECTIONS – number of loops, after which service will restart

This setting will re-start the Windows service after the set number of data collections.

If the setting is not specified or COLLECTIONS is not a number greater than zero, the service will not be restarted.

Some users have found that the XymonPSClient leaks memory (i.e. the amount of memory used keeps growing). This happens only on some builds of Windows. Some research into the issue has been done and a number of leaks have been fixed but the issue still occurs on some servers. There are many potential factors at play – OS patch level, .NET version, Powershell client version. Restarting the service periodically stops this runaway memory usage.
Unsupported client-local.cfg entries
linecount

